Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
Cell Commun Signal ; 22(1): 189, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519981

RESUMO

The proinflammatory cytokines and arachidonic acid (AA)-derived eicosanoids play a key role in cartilage degeneration in osteoarthritis (OA). The lysophosphatidylcholine acyltransferase 3 (LPCAT3) preferentially incorporates AA into the membranes. Our recent studies showed that MALT1 [mucosa-associated lymphoid tissue lymphoma translocation protein 1]) plays a crucial role in propagating inflammatory signaling triggered by IL-1ß and other inflammatory mediators in endothelial cells. The present study shows that LPCAT3 expression was up-regulated in both human and mice articular cartilage of OA, and correlated with severity of OA. The IL-1ß-induces cell death via upregulation of LPCAT3, MMP3, ADAMTS5, and eicosanoids via MALT1. Gene silencing or pharmacological inhibition of LPCAT3 or MALT1 in chondrocytes and human cartilage explants notably suppressed the IL-1ß-induced cartilage catabolism through inhibition of expression of MMP3, ADAMTS5, and also secretion of cytokines and eicosanoids. Mechanistically, overexpression of MALT1 in chondrocytes significantly upregulated the expression of LPCAT3 along with MMP3 and ADAMTS5 via c-Myc. Inhibition of c-Myc suppressed the IL-1ß-MALT1-dependent upregulation of LPCAT3, MMP3 and ADAMTS5. Consistent with the in vitro data, pharmacological inhibition of MALT1 or gene silencing of LPCAT3 using siRNA-lipid nanoparticles suppressed the synovial articular cartilage erosion, pro-inflammatory cytokines, and eicosanoids such as PGE2, LTB4, and attenuated osteoarthritis induced by the destabilization of the medial meniscus in mice. Overall, our data reveal a previously unrecognized role of the MALT1-LPCAT3 axis in osteoarthritis. Targeting the MALT1-LPCAT3 pathway with MALT1 inhibitors or siRNA-liposomes of LPCAT3 may become an effective strategy to treat OA by suppressing eicosanoids, matrix-degrading enzymes, and proinflammatory cytokines.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Humanos , Camundongos , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/farmacologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/metabolismo , Citocinas/metabolismo , Eicosanoides/metabolismo , Eicosanoides/farmacologia , Eicosanoides/uso terapêutico , Células Endoteliais/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/farmacologia , Metaloproteinase 3 da Matriz/uso terapêutico , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Osteoartrite/metabolismo , RNA Interferente Pequeno/metabolismo
2.
Oncol Rep ; 51(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38551165

RESUMO

Melanoma is the most lethal type of skin cancer with an increasing cutaneous cancer­related mortality rate worldwide. Despite therapeutic advances in targeted therapy and immunotherapy, the overall survival of patients with melanoma remains unsatisfactory. Thus, a further understanding of the pathogenesis of melanoma may aid towards the development of therapeutic strategies. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) is a key enzyme that converts lysophosphatidylcholine into phosphatidylcholine in lipid remodeling. In the present study, LPCAT1 was found to play a pro­proliferative role in melanoma. Firstly, the expression of LPCAT1 was found to be upregulated in tissues from patients with melanoma compared with that in benign nevi. Subsequently, LPCAT1 knockdown was performed, utilizing short hairpin RNA, which induced melanoma cell cycle arrest at the G1/S transition and promoted cell death. Moreover, LPCAT1 facilitated melanoma cell growth in an Akt­dependent manner. In summary, the results of the present study indicate that targeting LPCAT1 may impede cell proliferation by inhibiting Akt signaling, thus providing a promising therapeutic strategy for melanoma in clinical practice.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Melanoma , Proteínas Proto-Oncogênicas c-akt , Neoplasias Cutâneas , Humanos , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Melanoma/genética , Melanoma/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
3.
Mol Metab ; 82: 101913, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458567

RESUMO

OBJECTIVE: Adipose tissue mass is maintained by a balance between lipolysis and lipid storage. The contribution of adipose tissue lipogenesis to fat mass, especially in the setting of high-fat feeding, is considered minor. Here we investigated the effect of adipose-specific inactivation of the peroxisomal lipid synthetic protein PexRAP on fatty acid synthase (FASN)-mediated lipogenesis and its impact on adiposity and metabolic homeostasis. METHODS: To explore the role of PexRAP in adipose tissue, we metabolically phenotyped mice with adipose-specific knockout of PexRAP. Bulk RNA sequencing was used to determine transcriptomic responses to PexRAP deletion and 14C-malonyl CoA allowed us to measure de novo lipogenic activity in adipose tissue of these mice. In vitro cell culture models were used to elucidate the mechanism of cellular responses to PexRAP deletion. RESULTS: Adipose-specific PexRAP deletion promoted diet-induced obesity and insulin resistance through activation of de novo lipogenesis. Mechanistically, PexRAP inactivation inhibited the flux of carbons to ethanolamine plasmalogens. This increased the nuclear PC/PE ratio and promoted cholesterol mislocalization, resulting in activation of liver X receptor (LXR), a nuclear receptor known to be activated by increased intracellular cholesterol. LXR activation led to increased expression of the phospholipid remodeling enzyme LPCAT3 and induced FASN-mediated lipogenesis, which promoted diet-induced obesity and insulin resistance. CONCLUSIONS: These studies reveal an unexpected role for peroxisome-derived lipids in regulating LXR-dependent lipogenesis and suggest that activation of lipogenesis, combined with dietary lipid overload, exacerbates obesity and metabolic dysregulation.


Assuntos
Resistência à Insulina , Lipogênese , Animais , Camundongos , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Tecido Adiposo/metabolismo , Colesterol/metabolismo , Gorduras na Dieta/metabolismo , Lipogênese/genética , Receptores X do Fígado/metabolismo , Camundongos Knockout , Obesidade/metabolismo
4.
J Immunother Cancer ; 12(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471712

RESUMO

BACKGROUND: Ferroptosis plays an important role in enhancing the efficacy of anti-programmed cell death 1 (PD-1) immunotherapy; however, the molecular mechanisms by which tumor ferroptosis sensitizes melanoma and lung cancer to anti-PD-1 immunotherapy have not been elucidated. METHODS: Cytotoxicity assays, colony formation assays, flow cytometry and animal experiments were used to evaluate the effects of mefloquine (Mef) on survival and ferroptosis in melanoma and lung cancer. RNA sequencing, Real-time quantitative PCR (qRT-PCR), western blotting, chromatin immunoprecipitation-qPCR and flow cytometry were used to determine the molecular mechanisms by which Mef regulates lysophosphatidylcholine acyltransferase 3 (LPCAT3). The relationship between LPCAT3 and the efficacy of anti-PD-1 immunotherapy was verified via a clinical database and single-cell RNA sequencing (ScRNA-Seq). RESULTS: In this study, we discovered that Mef induces ferroptosis. Furthermore, treatment with Mef in combination with T-cell-derived interferon-γ (IFN-γ) enhanced tumor ferroptosis and sensitized melanoma and lung cancer cells to anti-PD-1 immunotherapy. Mechanistically, Mef upregulated the expression of LPCAT3, a key gene involved in lipid peroxidation, by activating IFN-γ-induced STAT1-IRF1 signaling, and knocking down LPCAT3 impaired the induction of ferroptosis by Mef+IFN-γ. Clinically, analysis of the transcriptome and single-cell sequencing results in patients with melanoma showed that LPCAT3 expression was significantly lower in patients with melanoma than in control individuals, and LPCAT3 expression was positively correlated with the efficacy of anti-PD-1 immunotherapy. CONCLUSIONS: In conclusion, our study demonstrated a novel mechanism by which LPCAT3 is regulated, and demonstrated that Mef is a highly promising new target that can be utilized to enhance the efficacy of anti-PD-1 immunotherapy.


Assuntos
Ferroptose , Neoplasias Pulmonares , Melanoma , Animais , Humanos , Melanoma/tratamento farmacológico , Mefloquina/farmacologia , Mefloquina/uso terapêutico , Interferon gama/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Imunoterapia , Fator de Transcrição STAT1/metabolismo , Fator Regulador 1 de Interferon/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/farmacologia
5.
Int J Mol Med ; 53(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38362962

RESUMO

Phospholipids (PLs) are principle constituents of biofilms, with their fatty acyl chain composition significantly impacting the biophysical properties of membranes, thereby influencing biological processes. Recent studies have elucidated that fatty acyl chains, under the enzymatic action of lyso­phosphatidyl­choline acyltransferases (LPCATs), expedite incorporation into the sn­2 site of phosphatidyl­choline (PC), profoundly affecting pathophysiology. Accumulating evidence suggests that alterations in LPCAT activity are implicated in various diseases, including non­alcoholic fatty liver disease (NAFLD), hepatitis C, atherosclerosis and cancer. Specifically, LPCAT3 is instrumental in maintaining systemic lipid homeostasis through its roles in hepatic lipogenesis, intestinal lipid absorption and lipoprotein secretion. The liver X receptor (LXR), pivotal in lipid homeostasis, modulates cholesterol, fatty acid (FA) and PL metabolism. LXR's capacity to modify PL composition in response to cellular sterol fluctuations is a vital mechanism for protecting biofilms against lipid stress. Concurrently, LXR activation enhances LPCAT3 expression on cell membranes and elevates polyunsaturated PL levels. This activation can ameliorate saturated free FA effects in vitro or endoplasmic reticulum stress in vivo due to lipid accumulation in hepatic cells. Pharmacological interventions targeting LXR, LPCAT and membrane PL components could offer novel therapeutic directions for NAFLD management. The present review primarily focused on recent advancements in understanding the LPCAT3 signaling pathway's role in lipid metabolism related to NAFLD, aiming to identify new treatment targets for the disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores X do Fígado/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos , Fosfolipídeos/metabolismo , Ácidos Graxos/metabolismo , Transdução de Sinais , Colina/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/farmacologia
6.
Gene ; 896: 148056, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38042217

RESUMO

In farmed fish, diets rich in palm oil have been observed to promote abnormal lipid build-up in the liver, subsequently leading to physiological harm and disease onset. Emerging research suggests that integrating phospholipids into the feed could serve as a potent countermeasure against hepatic impairments induced by vegetable oil consumption. Phosphatidylcholine is the most abundant type among phospholipids. In the metabolic processes of mammal, lysophosphatidylcholine acyltransferase 1 (LPCAT1), crucial for phosphatidylcholine remodeling, demonstrates a marked affinity towards palmitic acid (PA). Nonetheless, aspects concerning the cloning, tissue-specific distribution, and affinity of the LPCAT1 gene to diverse oil sources have yet to be elucidated in the large yellow croaker (Larimichthys crocea). Within the scope of this study, we successfully isolated and cloned the cDNA of the LPCAT1 gene from the large yellow croaker. Subsequent analysis revealed distinct gene expression patterns of LPCAT1 across ten different tissues of the species. The fully sequenced coding DNA sequence (CDS) of LPCAT1 spans 1503 bp and encodes a sequence of 500 amino acids. Comparative sequence alignment indicates that LPCAT1 shares a 69.75 % amino acid similarity with its counterparts in other species. Although LPCAT1 manifests across various tissues of the large yellow croaker, its predominance is markedly evident in the liver and gills. Furthermore, post exposure of the large yellow croaker's hepatocytes to varied fatty acids, PA has a strong response to LPCAT1. Upon the addition of appropriate lysolecithin to palm oil feed, the mRNA expression of LPCAT1 in the liver cells of the large yellow croaker showed significant variations compared to other subtypes. Concurrently, the mRNA expression of pro-inflammatory genes il-1ß, il-6, il-8, tnf-α and ifn-γ in the liver tissue of the large yellow croaker decreased. Interestingly, they exhibit the same trend of change. In conclusion, we have cloned the LPCAT1 gene on fish successfully and find the augmented gene response of LPCAT1 in hepatocytes under PA treatment first. The results of this study suggest that LPCAT1 may be associated with liver inflammation in fish and offer new insights into mitigating liver diseases in fish caused by palm oil feed.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Ácidos Graxos , Perciformes , Animais , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Aciltransferases/metabolismo , Clonagem Molecular , Ácidos Graxos/metabolismo , Proteínas de Peixes/metabolismo , Mamíferos/genética , Óleo de Palmeira/metabolismo , Perciformes/genética , Perciformes/metabolismo , Fosfatidilcolinas/metabolismo , Fosfolipídeos/metabolismo , RNA Mensageiro/genética
7.
Environ Toxicol ; 39(3): 1747-1758, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38050670

RESUMO

Di-(2-ethylhexyl) phthalate (DEHP), a widely used plasticizer, has been shown to cause reproductive toxicity, but the precise mechanism remains unclear. This study aimed to investigate the possible molecular mechanism of DEHP-induced testicular damage. In vivo study, we administered different doses of DEHP (0, 250, and 500 mg/kg/day) to male C57BL/6 mice from 22 and 35 days after birth. We found that DEHP exposure induced histopathological alterations in prepubertal testes, and testicular lipidomics indicated notable alterations in lipid metabolism and significant enrichment of ferroptosis. Further tests showed that ferrous iron (Fe2+ ) and malondialdehyde (MDA) levels significantly increased after DEHP exposure. Western blotting revealed that DEHP exposure reduced glutathione peroxidase 4 (GPX4) expression, and elevated acyl coenzyme A synthetase long-chain member 4 (ACSL4) and lysophosphatidylcholine acyltransferase 3 (LPCAT3) expression. The in vitro results were consistent with the in vivo results. When Leydig cells and Sertoli cells were treated with ferrostatin-1 and monoethylhexyl phthalate (MEHP), MEHP-induced increases in Fe2+ and MDA levels, accumulation of lipid reactive oxygen species, downregulation of GPX4, and upregulation of ACSL4 and LPCAT3 were reversed. Collectively, our findings suggested that aberrant lipid metabolism and ferroptosis may be involved in prepubertal DEHP exposure-induced testicular damage.


Assuntos
Dietilexilftalato , Ferroptose , Ácidos Ftálicos , Camundongos , Animais , Masculino , Testículo/metabolismo , Dietilexilftalato/toxicidade , Metabolismo dos Lipídeos , Camundongos Endogâmicos C57BL , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo
8.
Biochimie ; 215: 24-33, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37611890

RESUMO

Lysophospholipid acyltransferases (LPLATs), in concert with glycerol-3-phosphate acyltransferases (GPATs) and phospholipase A1/2s, orchestrate the compositional diversity of the fatty chains in membrane phospholipids. Fourteen LPLAT enzymes which come from two distinct families, AGPAT and MBOAT, have been identified, and in this mini-review we provide an overview of their roles in de novo and remodeling pathways of membrane phospholipid biosynthesis. Recently new nomenclature for LPLATs has been introduced (LPLATx, where x is a number 1-14), and we also give an overview of key biological functions that have been discovered for LPLAT1-14, revealed primarily through studies of LPLAT-gene-deficient mice as well as by linkages to various human diseases.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Fosfolipídeos , Humanos , Animais , Camundongos , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Fosfolipídeos/metabolismo , Lisofosfolipídeos , Aciltransferases/metabolismo
9.
Diabetes ; 72(11): 1547-1559, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37625119

RESUMO

Cell membrane phosphatidylcholine (PC) composition is regulated by lysophosphatidylcholine acyltransferase (LPCAT); changes in membrane PC saturation are implicated in metabolic disorders. Here, we identified LPCAT3 as the major isoform of LPCAT in adipose tissue and created adipocyte-specific Lpcat3-knockout mice to study adipose tissue lipid metabolism. Transcriptome sequencing and plasma adipokine profiling were used to investigate how LPCAT3 regulates adipose tissue insulin signaling. LPCAT3 deficiency reduced polyunsaturated PCs in adipocyte plasma membranes, increasing insulin sensitivity. LPCAT3 deficiency influenced membrane lipid rafts, which activated insulin receptors and AKT in adipose tissue, and attenuated diet-induced insulin resistance. Conversely, higher LPCAT3 activity in adipose tissue from ob/ob, db/db, and high-fat diet-fed mice reduced insulin signaling. Adding polyunsaturated PCs to mature human or mouse adipocytes in vitro worsened insulin signaling. We suggest that targeting LPCAT3 in adipose tissue to manipulate membrane phospholipid saturation is a new strategy to treat insulin resistance.


Assuntos
Resistência à Insulina , Fosfatidilcolinas , Humanos , Animais , Camundongos , Fosfatidilcolinas/metabolismo , Resistência à Insulina/genética , Tecido Adiposo/metabolismo , Fosfolipídeos , Insulina , Camundongos Endogâmicos C57BL , Dieta Hiperlipídica , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo
10.
Viruses ; 15(8)2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37632038

RESUMO

Zoonotic coronaviruses infect mammals and birds, causing pulmonary and gastrointestinal infections. Some animal coronaviruses, such as the porcine epidemic diarrhea virus (PEDV) and transmissible gastroenteritis virus (TGEV), lead to severe diarrhea and animal deaths. Gastrointestinal symptoms were also found in COVID-19 and SARS patients. However, the pathogenesis of gastrointestinal symptoms in coronavirus diseases remains elusive. In this study, the main protease-induced LPCAT3 cleavage was monitored by exogenous gene expression and protease inhibitors, and the related regulation of gene expression was confirmed by qRT-PCR and gene knockdown. Interestingly, LPCAT3 plays an important role in lipid absorption in the intestines. The Mpro of coronaviruses causing diarrhea, such as PEDV and MERS-CoV, but not the Mpro of HCoV-OC43 and HCoV-HKU1, which could induce LPCAT3 cleavage. Mutagenesis analysis and inhibitor experiments indicated that LPCAT3 cleavage was independent of the catalytic activity of Mpro. Moreover, LPCAT3 cleavage in cells boosted CHOP and GRP78 expression, which were biomarkers of ER stress. Since LPCAT3 is critical for lipid absorption in the intestines and malabsorption may lead to diarrhea in coronavirus diseases, Mpro-induced LPCAT3 cleavage might trigger gastrointestinal symptoms during coronavirus infection.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , COVID-19 , Suínos , Animais , Diarreia , Retículo Endoplasmático , Lipídeos , Mamíferos , Peptídeo Hidrolases , Vírus da Diarreia Epidêmica Suína , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo
11.
Cancer Med ; 12(12): 13438-13454, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37184260

RESUMO

BACKGROUND AND AIM: The biological functions and clinical implications of lysophosphatidylcholine acyltransferase 1 (LPCAT1) remain unclarified in gastric cancer (GC). The aim of the current study was to explore the possible clinicopathological significance of LPCAT1 and its perspective mechanism in GC tissues. MATERIALS AND METHODS: The protein expression and mRNA levels of LPCAT1 were detected from in-house immunohistochemistry and public high-throughput RNA arrays and RNA sequencing. To have a comprehensive understanding of the clinical value of LPCAT1 in GC, all enrolled data were integrated to calculate the expression difference and standard mean difference (SMD). The biological mechanism of LPCAT1 in GC was confirmed by computational biology and in vitro experiments. Migration and invasion assays were also conducted to confirm the effect of LPCAT1 in GC. RESULTS: Both protein and mRNA expression levels of LPCAT1 in GC were remarkably higher than those in noncancerous controls. Comprehensively, the SMD of LPCAT1 mRNA was 1.11 (95% CI = 0.86-1.36) in GC, and the summarized AUC was 0.85 based on 15 datasets containing 1727 cases of GC and 940 cases of non-GC controls. Moreover, LPCAT1 could accelerate the invasion and migration of GC by boosting the neutrophil degranulation pathway and disturbing the immune microenvironment. CONCLUSION: An increased level of LPCAT1 may promote the progression of GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Proliferação de Células , Aciltransferases , Biologia Computacional , RNA Mensageiro/genética , Microambiente Tumoral
12.
Ann Clin Lab Sci ; 53(2): 212-221, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37094849

RESUMO

OBJECTIVE: To explore the function of LPCAT1 in hepatocellular carcinoma progression. METHODS: Bioinformatics analysis was utilized to the data from TCGA to explore the level of LPCAT1 between normal and tumor tissues, as well as the relationship between LPCAT1 level and tumor grade and prognosis of HCC. Subsequently, we used siRNA to silence LPCAT1 in HCC cells to detect cell proliferation, migration, and invasion ability. RESULTS: The expression of LPCAT1 was significantly increased in HCC tissues. High LPCAT1 expression was correlated with high histologic grade and poor prognosis of HCC. In addition, silencing of LPCAT1 inhibited the proliferation, migration and invasion of liver cancer cells. Moreover, LPCAT1 knockdown suppressed S100A11 and Snail both at mRNA and protein level. CONCLUSION: LPCAT1 promoted the growth, invasion and migration of HCC cells by regulating S100A11 and Snail. Therefore, LPCAT1 may serve as a potential molecular target for the diagnosis and treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/patologia , Movimento Celular/genética , Invasividade Neoplásica/genética , Prognóstico , Proliferação de Células/genética , Aciltransferases/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proteínas S100/genética , Proteínas S100/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo
13.
Mol Biol Rep ; 50(6): 4955-4963, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37079124

RESUMO

BACKGROUND: Overexpression of lysophosphatidylcholine acyltransferase 1 (LPCAT1) has been found in various solid cancers and is associated with disease progression, metastasis, and recurrence. However, the expression pattern of LPCAT1 in acute myeloid leukemia (AML) bone marrow remains unknown. The present study aimed to compare LPCAT1 expression differences in bone marrow samples from AML patients and healthy controls and assess the clinical relevance of LPCAT1 in AML. METHODS AND RESULTS: LPCAT1 expression in bone marrow was significantly lower in AML than in healthy controls predicted by public databases. Furthermore, real-time quantitative PCR (RQ-PCR) validated that LPCAT1 expression in bone marrow was significantly down-regulated in AML compared to healthy controls [0.056 (0.000-0.846) vs 0.253 (0.031-1.000)]. The DiseaseMeth version 2.0 and The Cancer Genome Atlas analysis revealed that the LPCAT1 promoter was hypermethylated in AML, and there was a strong negative correlation between LPCAT1 expression and methylation (R = - 0.610, P < 0.001). RQ-PCR revealed that the frequency of LPCAT1 low expression was lower in the FAB-M4/M5 subtype than in the other subtypes (P = 0.018). The ROC curve revealed that LPCAT1 expression could serve as a potential diagnostic marker for differentiating AML from controls with an area under the ROC curve of 0.819 (95% CI 0.743-0.894, P < 0.001). In cytogenetically normal AML, patients with LPCAT1 low expression had significantly longer overall survival than those without LPCAT1 low expression (median 19 versus 5.5 months, P = 0.036). CONCLUSIONS: LPCAT1 is down-regulated in AML bone marrow, and LPCAT1 down-regulation could be used as a potential biomarker for AML diagnosis and prognosis.


Assuntos
Relevância Clínica , Leucemia Mieloide Aguda , Humanos , Regulação para Baixo/genética , Leucemia Mieloide Aguda/metabolismo , Medula Óssea/metabolismo , Curva ROC , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo
14.
Adv Sci (Weinh) ; 10(18): e2300416, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37088778

RESUMO

The liver plays a central role in regulating glucose and lipid metabolism. Aberrant insulin action in the liver is a major driver of selective insulin resistance, in which insulin fails to suppress glucose production but continues to activate lipogenesis in the liver, resulting in hyperglycemia and hypertriglyceridemia. The underlying mechanisms of selective insulin resistance are not fully understood. Here It is shown that hepatic membrane phospholipid composition controlled by lysophosphatidylcholine acyltransferase 3 (LPCAT3) regulates insulin signaling and systemic glucose and lipid metabolism. Hyperinsulinemia induced by high-fat diet (HFD) feeding augments hepatic Lpcat3 expression and membrane unsaturation. Loss of Lpcat3 in the liver improves insulin resistance and blunts lipogenesis in both HFD-fed and genetic ob/ob mouse models. Mechanistically, Lpcat3 deficiency directly facilitates insulin receptor endocytosis, signal transduction, and hepatic glucose production suppression and indirectly enhances fibroblast growth factor 21 (FGF21) secretion, energy expenditure, and glucose uptake in adipose tissue. These findings identify hepatic LPCAT3 and membrane phospholipid composition as a novel regulator of insulin sensitivity and provide insights into the pathogenesis of selective insulin resistance.


Assuntos
Resistência à Insulina , Camundongos , Animais , Resistência à Insulina/genética , Fosfolipídeos/metabolismo , Fígado/metabolismo , Glucose/metabolismo , Insulina/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo
15.
Mediators Inflamm ; 2023: 6051946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36687218

RESUMO

Based on the multiomics analysis, this study is aimed at investigating the underlying mechanism of didymin against acute liver injury (ALI). The mice were administrated with didymin for 2 weeks, followed by injection with lipopolysaccharide (LPS) plus D-galactosamine (D-Gal) to induce ALI. The pathological examination revealed that didymin significantly ameliorated LPS/D-Gal-induced hepatic damage. Also, it markedly reduced proinflammatory cytokines release by inhibiting the TLR4/NF-κB pathway activation, alleviating inflammatory injury. A transcriptome analysis proved 2680 differently expressed genes (DEGs) between the model and didymin groups and suggested that the PI3K/Akt and metabolic pathways might be the most relevant targets. Meanwhile, the metabolome analysis revealed 67 differently expressed metabolites (DEMs) between the didymin and model groups that were mainly clustered into the glycerophospholipid metabolism, which was consistent with the transcriptome study. Importantly, a comprehensive analysis of both the omics indicated a strong correlation between the DEGs and DEMs, and an in-depth study demonstrated that didymin alleviated metabolic disorder and hepatocyte injury likely by inhibiting the glycerophospholipid metabolism pathway through the regulation of PLA2G4B, LPCAT3, and CEPT1 expression. In conclusion, this study demonstrates that didymin can ameliorate LPS/D-Gal-induced ALI by inhibiting the glycerophospholipid metabolism and PI3K/Akt and TLR4/NF-κB pathways.


Assuntos
NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Transcriptoma , Receptor 4 Toll-Like/metabolismo , Fígado/metabolismo , Metaboloma , Glicerofosfolipídeos/metabolismo , Glicerofosfolipídeos/farmacologia , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/farmacologia , Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/metabolismo , Fosfolipases A2 do Grupo IV/farmacologia
16.
Angew Chem Int Ed Engl ; 62(6): e202215556, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36478519

RESUMO

Lysophosphatidylcholine acyltransferase-1 (LPCAT1) plays a critical role in the remodeling of phosphatidylcholines (PCs) in cellular lipidome. However, evidence is scarce regarding its sn-selectivity, viz. the preference of assembling acyl-Coenzyme A (CoA) at the C1 or C2-hydroxyl on a glycerol backbone because of difficulty to quantify the thus-formed PC sn-isomers. We have established a multiplexed assay to measure both sn- and acyl-chain selectivity of LPCAT1 toward a mixture of acyl-CoAs by integrating isomer-resolving tandem mass spectrometry. Our findings reveal that LPCAT1 shows exclusive sn-1 specificity regardless of the identity of acyl-CoAs. We further confirm that elevated PC 18 : 1/16:0 relative to its sn-isomer results from an increased expression of LPCAT1 in human hepatocellular carcinoma (HCC) tissue as compared to normal liver tissue. MS imaging via desorption electrospray ionization of PC 18 : 1/16:0 thus enables visualization of HCC margins in human liver tissue at a molecular level.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Fosfatidilcolinas/metabolismo , Especificidade por Substrato , Espectrometria de Massas em Tandem
17.
Biomolecules ; 12(12)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36551154

RESUMO

The transfer of acyl chains to proteins and lipids from acyl-CoA donor molecules is achieved by the actions of diverse enzymes and proteins, including the acyl-CoA binding domain-containing protein ACBD6. N-myristoyl-transferase (NMT) enzymes catalyze the covalent attachment of a 14-carbon acyl chain from the relatively rare myristoyl-CoA to the N-terminal glycine residue of myr-proteins. The interaction of the ankyrin-repeat domain of ACBD6 with NMT produces an active enzymatic complex for the use of myristoyl-CoA protected from competitive inhibition by acyl donor competitors. The absence of the ACBD6/NMT complex in ACBD6.KO cells increased the sensitivity of the cells to competitors and significantly reduced myristoylation of proteins. Protein palmitoylation was not altered in those cells. The specific defect in myristoyl-transferase activity of the ACBD6.KO cells provided further evidence of the essential functional role of the interaction of ACBD6 with the NMT enzymes. Acyl-CoAs bound to the acyl-CoA binding domain of ACBD6 are acyl donors for the lysophospholipid acyl-transferase enzymes (LPLAT), which acylate single acyl-chain lipids, such as the bioactive molecules LPA and LPC. Whereas the formation of acyl-CoAs was not altered in ACBD6.KO cells, lipid acylation processes were significantly reduced. The defect in PC formation from LPC by the LPCAT enzymes resulted in reduced lipid droplets content. The diversity of the processes affected by ACBD6 highlight its dual function as a carrier and a regulator of acyl-CoA dependent reactions. The unique role of ACBD6 represents an essential common feature of (acyl-CoA)-dependent modification pathways controlling the lipid and protein composition of human cell membranes.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Acetilcoenzima A , Metabolismo dos Lipídeos , Processamento de Proteína Pós-Traducional , Humanos , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Acilação , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácido Mirístico/metabolismo , Acetilcoenzima A/metabolismo
18.
Acta Biochim Biophys Sin (Shanghai) ; 55(1): 117-130, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36331295

RESUMO

Phosphatidylcholines (PCs) are major phospholipids in the mammalian cell membrane. Structural remodeling of PCs is associated with many biological processes. Lysophosphatidylcholine acyltransferase 3 (Lpcat3), which catalyzes the incorporation of polyunsaturated fatty acyl chains into the sn-2 site of PCs, plays an important role in maintaining plasma membrane fluidity. Adipose tissue is one of the main distribution organs of Lpcat3, while the relationship between Lpcat3 and adipose tissue dysfunction during overexpansion remains unknown. In this study, we reveal that both polyunsaturated PC content and Lpcat3 expression are increased in abdominal adipose tissues of high-fat diet-fed mice when compared with chow-diet-fed mice, indicating that Lpcat3 is involved in adipose tissue overexpansion and dysfunction. Our experiments in 3T3-L1 adipocytes show that inhibition of Lpcat3 does not change triglyceride accumulation but increases palmitic acid-induced inflammation and lipolysis. Conversely, Lpcat3 overexpression exhibits anti-inflammatory and anti-lipolytic effects. Furthermore, mechanistic studies demonstrate that Lpcat3 deficiency promotes reactive oxygen species (ROS) generation by increasing NOX enzyme activity by facilitating the translocation of NOX4 to lipid rafts, thereby aggregating 3T3-L1 adipocyte inflammation induced by palmitic acid. Moreover, overexpression of Lpcat3 exhibits the opposite effects. These findings suggest that Lpcat3 protects adipocytes from inflammation during adipose tissue overexpansion by reducing ROS generation. In conclusion, our study demonstrates that Lpcat3 deficiency promotes palmitic acid-induced inflammation in 3T3-L1 adipocytes by enhancing ROS generation.


Assuntos
Adipócitos , Ácido Palmítico , Animais , Camundongos , Ácido Palmítico/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Células 3T3-L1 , Adipócitos/metabolismo , Inflamação/metabolismo , Mamíferos/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo
19.
J Biol Chem ; 298(12): 102706, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36395887

RESUMO

The red blood cell (RBC)-Omics study, part of the larger NHLBI-funded Recipient Epidemiology and Donor Evaluation Study (REDS-III), aims to understand the genetic contribution to blood donor RBC characteristics. Previous work identified donor demographic, behavioral, genetic, and metabolic underpinnings to blood donation, storage, and (to a lesser extent) transfusion outcomes, but none have yet linked the genetic and metabolic bodies of work. We performed a genome-wide association (GWA) analysis using RBC-Omics study participants with generated untargeted metabolomics data to identify metabolite quantitative trait loci in RBCs. We performed GWA analyses of 382 metabolites in 243 individuals imputed using the 1000 Genomes Project phase 3 all-ancestry reference panel. Analyses were conducted using ProbABEL and adjusted for sex, age, donation center, number of whole blood donations in the past 2 years, and first 10 principal components of ancestry. Our results identified 423 independent genetic loci associated with 132 metabolites (p < 5×10-8). Potentially novel locus-metabolite associations were identified for the region encoding heme transporter FLVCR1 and choline and for lysophosphatidylcholine acetyltransferase LPCAT3 and lysophosphatidylserine 16.0, 18.0, 18.1, and 18.2; these associations are supported by published rare disease and mouse studies. We also confirmed previous metabolite GWA results for associations, including N(6)-methyl-L-lysine and protein PYROXD2 and various carnitines and transporter SLC22A16. Association between pyruvate levels and G6PD polymorphisms was validated in an independent cohort and novel murine models of G6PD deficiency (African and Mediterranean variants). We demonstrate that it is possible to perform metabolomics-scale GWA analyses with a modest, trans-ancestry sample size.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Humanos , Animais , Camundongos , Doadores de Sangue , Eritrócitos/metabolismo , Voluntários , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo
20.
Eur J Med Res ; 27(1): 216, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307879

RESUMO

BACKGROUND: Lysophosphatidylcholine acyltransferase 1 (LPCAT1) is overexpressed in multiple human tumors. However, the role of LPCAT1 in hepatocellular carcinoma (HCC) has not been understood. We aim to explore the relationships between LPCAT1 expression and prognosis, clinicopathological features, tumor microenvironment (TME), immune cell infiltration, immune checkpoint gene expression, and related signaling pathways in HCC. Furthermore, we also explored the relationship between LPCAT1 expression and drug sensitivity to HCC treatment. METHODS: The expression profiles were acquired from the Cancer Genome Atlas (TCGA) and the Human Protein Atlas (THPA). Immune status and infiltration in cancer tissues were explored using the single sample gene set enrichment analysis (ssGSEA) and CIBERSORT algorithm. RESULTS: LPCAT1 was overexpressed in HCC, and its expression was related to poor prognosis, LPCAT1 was an independent prognostic biomarker in HCC. Expression of LPCAT1 increased statistically with the increase of clinical stage and grade of HCC patients. GO and KEGG network analysis revealed that LPCAT1 positively associated molecules were mostly enriched in functions related to cell adhesion. The TME score of high-LPCAT1 group was significantly higher than that of low-LPCAT1 group. Immune infiltrating cells positively correlated with LPCAT1 expression were Macrophages M0, B cells memory, Dendritic cells activated, T cells regulatory and T cells gamma delta in HCC. We found a positive correlation between LPCAT1 and most immune checkpoint gene expression. The IC50 of 5-Fluorouracil, Gemcitabine, Mitomycin C, Sorafenib and Cabozantinib in patients with high-LPCAT1 expression was lower than that in patients with low-LPCAT1 expression. Our findings provide a wealth of information for further understanding of the biological functions and signaling pathways of LPCAT1 in HCC. CONCLUSIONS: LPCAT1 is an independent prognostic biomarker and associated with tumor microenvironment, immune cell infiltration, immune checkpoint expression and drug sensitivity in hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Prognóstico , Neoplasias Hepáticas/patologia , Sorafenibe , Biomarcadores , Microambiente Tumoral/genética , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...